public class BetaDistributionImpl extends AbstractContinuousDistribution implements BetaDistribution
References:
| Modifier and Type | Field and Description |
|---|---|
static double |
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy
|
| Constructor and Description |
|---|
BetaDistributionImpl(double alpha,
double beta)
Build a new instance.
|
BetaDistributionImpl(double alpha,
double beta,
double inverseCumAccuracy)
Build a new instance.
|
| Modifier and Type | Method and Description |
|---|---|
double |
cumulativeProbability(double x)
For a random variable X whose values are distributed according
to this distribution, this method returns P(X ≤ x).
|
double |
cumulativeProbability(double x0,
double x1)
For a random variable X whose values are distributed according
to this distribution, this method returns P(x0 ≤ X ≤ x1).
|
double |
density(double x)
Return the probability density for a particular point.
|
double |
density(java.lang.Double x)
Deprecated.
|
double |
getAlpha()
Access the shape parameter, alpha
|
double |
getBeta()
Access the shape parameter, beta
|
double |
getNumericalMean()
Returns the mean.
|
double |
getNumericalVariance()
Returns the variance.
|
double |
getSupportLowerBound()
Returns the lower bound of the support for this distribution.
|
double |
getSupportUpperBound()
Returns the upper bound of the support for this distribution.
|
double |
inverseCumulativeProbability(double p)
For this distribution, X, this method returns the critical point x, such
that P(X < x) =
p. |
void |
setAlpha(double alpha)
Deprecated.
as of 2.1 (class will become immutable in 3.0)
|
void |
setBeta(double beta)
Deprecated.
as of 2.1 (class will become immutable in 3.0)
|
reseedRandomGenerator, sample, samplepublic static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public BetaDistributionImpl(double alpha,
double beta,
double inverseCumAccuracy)
alpha - first shape parameter (must be positive)beta - second shape parameter (must be positive)inverseCumAccuracy - the maximum absolute error in inverse cumulative probability estimates
(defaults to DEFAULT_INVERSE_ABSOLUTE_ACCURACY)public BetaDistributionImpl(double alpha,
double beta)
alpha - first shape parameter (must be positive)beta - second shape parameter (must be positive)@Deprecated public void setAlpha(double alpha)
setAlpha in interface BetaDistributionalpha - the new shape parameter.public double getAlpha()
getAlpha in interface BetaDistribution@Deprecated public void setBeta(double beta)
setBeta in interface BetaDistributionbeta - the new scale parameter.public double getBeta()
getBeta in interface BetaDistribution@Deprecated public double density(java.lang.Double x)
density in interface BetaDistributiondensity in interface HasDensity<java.lang.Double>x - The point at which the density should be computed.public double density(double x)
density in class AbstractContinuousDistributionx - The point at which the density should be computed.public double inverseCumulativeProbability(double p)
throws MathException
p.inverseCumulativeProbability in interface ContinuousDistributioninverseCumulativeProbability in class AbstractContinuousDistributionp - the desired probabilitypMathException - if the inverse cumulative probability can not be
computed due to convergence or other numerical errors.public double cumulativeProbability(double x)
throws MathException
cumulativeProbability in interface Distributionx - the value at which the distribution function is evaluated.xMathException - if the cumulative probability can not be
computed due to convergence or other numerical errors.public double cumulativeProbability(double x0,
double x1)
throws MathException
The default implementation uses the identity
P(x0 ≤ X ≤ x1) = P(X ≤ x1) - P(X ≤ x0)
cumulativeProbability in interface DistributioncumulativeProbability in class AbstractDistributionx0 - the (inclusive) lower boundx1 - the (inclusive) upper boundx0 and x1,
including the endpoints.MathException - if the cumulative probability can not be
computed due to convergence or other numerical errors.public double getSupportLowerBound()
public double getSupportUpperBound()
public double getNumericalMean()
s1 and
second shape parameter s2, the mean is
s1 / (s1 + s2)public double getNumericalVariance()
s1 and
second shape parameter s2,
the variance is
[ s1 * s2 ] / [ (s1 + s2)^2 * (s1 + s2 + 1) ]Copyright © 2010 - 2023 Adobe. All Rights Reserved