public class ExponentialDistributionImpl extends AbstractContinuousDistribution implements ExponentialDistribution, java.io.Serializable
ExponentialDistribution.| Modifier and Type | Field and Description |
|---|---|
static double |
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy
|
| Constructor and Description |
|---|
ExponentialDistributionImpl(double mean)
Create a exponential distribution with the given mean.
|
ExponentialDistributionImpl(double mean,
double inverseCumAccuracy)
Create a exponential distribution with the given mean.
|
| Modifier and Type | Method and Description |
|---|---|
double |
cumulativeProbability(double x)
For this distribution, X, this method returns P(X < x).
|
double |
density(double x)
Return the probability density for a particular point.
|
double |
density(java.lang.Double x)
Deprecated.
- use density(double)
|
double |
getMean()
Access the mean.
|
double |
getNumericalMean()
Returns the mean of the distribution.
|
double |
getNumericalVariance()
Returns the variance of the distribution.
|
double |
getSupportLowerBound()
Returns the lower bound of the support for the distribution.
|
double |
getSupportUpperBound()
Returns the upper bound of the support for the distribution.
|
double |
inverseCumulativeProbability(double p)
For this distribution, X, this method returns the critical point x, such
that P(X < x) =
p. |
double |
sample()
Generates a random value sampled from this distribution.
|
void |
setMean(double mean)
Deprecated.
as of 2.1 (class will become immutable in 3.0)
|
reseedRandomGenerator, samplecumulativeProbabilityequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitcumulativeProbabilitypublic static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public ExponentialDistributionImpl(double mean)
mean - mean of this distribution.public ExponentialDistributionImpl(double mean,
double inverseCumAccuracy)
mean - mean of this distribution.inverseCumAccuracy - the maximum absolute error in inverse cumulative probability estimates
(defaults to DEFAULT_INVERSE_ABSOLUTE_ACCURACY)@Deprecated public void setMean(double mean)
setMean in interface ExponentialDistributionmean - the new mean.java.lang.IllegalArgumentException - if mean is not positive.public double getMean()
getMean in interface ExponentialDistribution@Deprecated public double density(java.lang.Double x)
density in interface ExponentialDistributiondensity in interface HasDensity<java.lang.Double>x - The point at which the density should be computed.public double density(double x)
density in class AbstractContinuousDistributionx - The point at which the density should be computed.public double cumulativeProbability(double x)
throws MathException
cumulativeProbability in interface Distributionx - the value at which the CDF is evaluated.MathException - if the cumulative probability can not be
computed due to convergence or other numerical errors.public double inverseCumulativeProbability(double p)
throws MathException
p.
Returns 0 for p=0 and Double.POSITIVE_INFINITY for p=1.
inverseCumulativeProbability in interface ContinuousDistributioninverseCumulativeProbability in class AbstractContinuousDistributionp - the desired probabilitypMathException - if the inverse cumulative probability can not be
computed due to convergence or other numerical errors.java.lang.IllegalArgumentException - if p < 0 or p > 1.public double sample()
throws MathException
Algorithm Description: Uses the Inversion Method to generate exponentially distributed random values from uniform deviates.
sample in class AbstractContinuousDistributionMathException - if an error occurs generating the random valuepublic double getSupportLowerBound()
public double getSupportUpperBound()
public double getNumericalMean()
k, the mean is
kpublic double getNumericalVariance()
k, the variance is
k^2Copyright © 2010 - 2023 Adobe. All Rights Reserved