public class GammaDistributionImpl extends AbstractContinuousDistribution implements GammaDistribution, java.io.Serializable
GammaDistribution.| Modifier and Type | Field and Description |
|---|---|
static double |
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy
|
| Constructor and Description |
|---|
GammaDistributionImpl(double alpha,
double beta)
Create a new gamma distribution with the given alpha and beta values.
|
GammaDistributionImpl(double alpha,
double beta,
double inverseCumAccuracy)
Create a new gamma distribution with the given alpha and beta values.
|
| Modifier and Type | Method and Description |
|---|---|
double |
cumulativeProbability(double x)
For this distribution, X, this method returns P(X < x).
|
double |
density(double x)
Returns the probability density for a particular point.
|
double |
density(java.lang.Double x)
Deprecated.
|
double |
getAlpha()
Access the shape parameter, alpha
|
double |
getBeta()
Access the scale parameter, beta
|
double |
getNumericalMean()
Returns the mean.
|
double |
getNumericalVariance()
Returns the variance.
|
double |
getSupportLowerBound()
Returns the upper bound of the support for the distribution.
|
double |
getSupportUpperBound()
Returns the upper bound of the support for the distribution.
|
double |
inverseCumulativeProbability(double p)
For this distribution, X, this method returns the critical point x, such
that P(X < x) =
p. |
void |
setAlpha(double alpha)
Deprecated.
as of 2.1 (class will become immutable in 3.0)
|
void |
setBeta(double newBeta)
Deprecated.
as of 2.1 (class will become immutable in 3.0)
|
reseedRandomGenerator, sample, samplecumulativeProbabilityequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitcumulativeProbabilitypublic static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public GammaDistributionImpl(double alpha,
double beta)
alpha - the shape parameter.beta - the scale parameter.public GammaDistributionImpl(double alpha,
double beta,
double inverseCumAccuracy)
alpha - the shape parameter.beta - the scale parameter.inverseCumAccuracy - the maximum absolute error in inverse cumulative probability estimates
(defaults to DEFAULT_INVERSE_ABSOLUTE_ACCURACY)public double cumulativeProbability(double x)
throws MathException
cumulativeProbability in interface Distributionx - the value at which the CDF is evaluated.MathException - if the cumulative probability can not be
computed due to convergence or other numerical errors.public double inverseCumulativeProbability(double p)
throws MathException
p.
Returns 0 for p=0 and Double.POSITIVE_INFINITY for p=1.
inverseCumulativeProbability in interface ContinuousDistributioninverseCumulativeProbability in class AbstractContinuousDistributionp - the desired probabilitypMathException - if the inverse cumulative probability can not be
computed due to convergence or other numerical errors.java.lang.IllegalArgumentException - if p is not a valid
probability.@Deprecated public void setAlpha(double alpha)
setAlpha in interface GammaDistributionalpha - the new shape parameter.java.lang.IllegalArgumentException - if alpha is not positive.public double getAlpha()
getAlpha in interface GammaDistribution@Deprecated public void setBeta(double newBeta)
setBeta in interface GammaDistributionnewBeta - the new scale parameter.java.lang.IllegalArgumentException - if newBeta is not positive.public double getBeta()
getBeta in interface GammaDistributionpublic double density(double x)
density in class AbstractContinuousDistributionx - The point at which the density should be computed.@Deprecated public double density(java.lang.Double x)
density in interface GammaDistributiondensity in interface HasDensity<java.lang.Double>x - The point at which the density should be computed.public double getSupportLowerBound()
public double getSupportUpperBound()
public double getNumericalMean()
alpha and scale
parameter beta, the mean is
alpha * betapublic double getNumericalVariance()
alpha and scale
parameter beta, the variance is
alpha * beta^2Copyright © 2010 - 2023 Adobe. All Rights Reserved