public interface DifferentiableMultivariateVectorialOptimizer
vectorial differentiable objective functions.
Optimization algorithms find the input point set that either maximize or minimize an objective function.
MultivariateRealOptimizer,
DifferentiableMultivariateRealOptimizer| Modifier and Type | Method and Description |
|---|---|
VectorialConvergenceChecker |
getConvergenceChecker()
Get the convergence checker.
|
int |
getEvaluations()
Get the number of evaluations of the objective function.
|
int |
getIterations()
Get the number of iterations realized by the algorithm.
|
int |
getJacobianEvaluations()
Get the number of evaluations of the objective function jacobian .
|
int |
getMaxEvaluations()
Get the maximal number of functions evaluations.
|
int |
getMaxIterations()
Get the maximal number of iterations of the algorithm.
|
VectorialPointValuePair |
optimize(DifferentiableMultivariateVectorialFunction f,
double[] target,
double[] weights,
double[] startPoint)
Optimizes an objective function.
|
void |
setConvergenceChecker(VectorialConvergenceChecker checker)
Set the convergence checker.
|
void |
setMaxEvaluations(int maxEvaluations)
Set the maximal number of functions evaluations.
|
void |
setMaxIterations(int maxIterations)
Set the maximal number of iterations of the algorithm.
|
void setMaxIterations(int maxIterations)
maxIterations - maximal number of function calls
.int getMaxIterations()
int getIterations()
void setMaxEvaluations(int maxEvaluations)
maxEvaluations - maximal number of function evaluationsint getMaxEvaluations()
int getEvaluations()
The number of evaluation correspond to the last call to the
optimize method. It is 0 if
the method has not been called yet.
int getJacobianEvaluations()
The number of evaluation correspond to the last call to the
optimize method. It is 0 if
the method has not been called yet.
void setConvergenceChecker(VectorialConvergenceChecker checker)
checker - object to use to check for convergenceVectorialConvergenceChecker getConvergenceChecker()
VectorialPointValuePair optimize(DifferentiableMultivariateVectorialFunction f, double[] target, double[] weights, double[] startPoint) throws FunctionEvaluationException, OptimizationException, java.lang.IllegalArgumentException
Optimization is considered to be a weighted least-squares minimization. The cost function to be minimized is ∑weighti(objectivei-targeti)2
f - objective functiontarget - target value for the objective functions at optimumweights - weight for the least squares cost computationstartPoint - the start point for optimizationFunctionEvaluationException - if the objective function throws one during
the searchOptimizationException - if the algorithm failed to convergejava.lang.IllegalArgumentException - if the start point dimension is wrongCopyright © 2010 - 2023 Adobe. All Rights Reserved